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Abstract. In the realm of postal services and e-commerce, operators
increasingly rely on complex automation systems to meet growing de-
mands. Despite the advancements, certain areas still necessitate human
intervention. One such challenge is that of Automated Singulation, which
involves picking up a parcel from a bulk shipment and placing it onto a
conveyor belt, a task that continues to be a bottleneck for automation
systems. PinTags introduces a high-capacity visual fiducial marker sys-
tem designed to address these challenges. By supporting up to 32,768
unique tags, PinTags not only identifies the pincode of the package’s
destination but also simultaneously estimates the pose and depth to aid
tasks like grasping and manipulation for robotic systems during auto-
mated singulation. PinTags aims to significantly reduce the need for
manual intervention by introducing an easy-to-integrate, low-cost, and
scalable perception solution that could enhance the overall efficiency of
postal and e-commerce logistics. Our marker generator is available at
https://pintag-review.github.io/PinTag/.
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1 Introduction

Visual fiducial markers, also known as fiducial tags or artificial landmarks, are
distinctive visual patterns designed for easy detection and identification by com-
puter vision systems. These markers serve as reference points in an environment,
enabling various applications in robotics, augmented reality, and computer vi-
sion. One of the most significant advantages of visual fiducial markers is their
ability to provide precise 6-degree-of-freedom (6-DoF) pose estimation, which
includes both position and orientation information [1, 2].

The widespread adoption of visual fiducial markers in robotics research can
be attributed to their integration into popular software frameworks such as
Robot Operating System [3] and OpenCV [4]. Libraries like ArUco, integrated
into OpenCV, have made it easier for researchers and developers to implement
marker-based solutions in their projects [5].

Beyond basic pose estimation, visual fiducial markers have found applications
in more complex tasks. For instance, in the field of Simultaneous Localization and
Mapping (SLAM), TagSLAM utilizes fiducial markers to achieve robust SLAM

https://pintag-review.github.io/PinTag/
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performance in challenging environments [6]. In underwater robotics, where tra-
ditional vision-based methods often fail due to poor visibility and distortion,
AprilTag-based SLAM has been successfully employed for high-precision robot
localization [7].

An innovative application of visual fiducial markers is exemplified by Nav-
iLens, a system designed to assist visually impaired individuals [8]. NaviLens
markers have been adopted in various public spaces, including subway stations,
restaurants, and product packaging, to provide location-based information and
guidance.

Fig. 1: An example illustrating three de-
tected PinTag markers along with plot-
ted estimated pose information. Red,
green, and blue lines indicate the esti-
mated X, Y, and Z axes, respectively.

Drawing inspiration from these di-
verse applications, we propose Pin-
Tags, a high-capacity visual fiducial
marker system designed to address
the challenges of automated singu-
lation in logistics. Automated singu-
lation refers to the process of sepa-
rating individual items from a bulk
shipment, typically for sorting or fur-
ther processing [9]. This task remains
a significant bottleneck in logistics
automation, often requiring human
intervention due to the complexity
of grasping and manipulating diverse
package shapes and sizes.

The logistics industry in India
presents a unique challenge for au-
tomated singulation systems. With
over 19,000 unique postal codes or
pincodes [10], there is a need for a
high-range visual fiducial marker sys-
tem that can efficiently encode this
vast number of destinations while si-
multaneously providing pose estima-
tion for robotic manipulation. Exist-
ing marker systems, while effective for many applications, often lack the capacity
to encode such a large number of unique identifiers while maintaining the abil-
ity to estimate pose accurately at high detection speeds under varying lighting
conditions.

PinTags addresses these challenges by introducing a novel visual fiducial
marker system capable of supporting up to 32,768 unique tags. This high capac-
ity not only allows for the encoding of all Indian pincodes but also provides addi-
tional capacity for future expansion or encoding of supplementary information.
Moreover, PinTags is designed to simultaneously estimate the pose and depth of
packages similar to other popular visual fiducial marker systems [2,11,12], facil-
itating robotic grasping and manipulation tasks during automated singulation.
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In the following sections, we will detail the design of PinTags, its detection
pipeline and evaluate its performance against the most widely-adopted markers
systems [2, 11].

2 Related Works

Visual fiducial marker systems have evolved significantly over the years, with
each new system addressing limitations of its predecessors and introducing novel
features. ARToolKitPlus, an extension of the original ARToolKit, introduced
improvements in detection speed and accuracy. It supported a wider range of
marker types and offered better performance on mobile devices [13]. ARTags, de-
veloped as an alternative to ARToolKit, provided enhanced robustness to lighting
variations and occlusions [1].

AprilTags represented a significant advancement in fiducial marker technol-
ogy. These square markers use a 2D binary coding scheme that allows for a large
number of unique tags. AprilTags offer improved detection accuracy and robust-
ness compared to earlier systems, particularly in challenging lighting conditions
and at longer distances [2]. ArUco markers, part of the OpenCV library [4], of-
fer a balance between simplicity and effectiveness. They use a dictionary-based
approach for marker generation and detection, allowing for customizable marker
sets. ArUco markers are known for their computational efficiency and good per-
formance across various lighting conditions [5, 11].

AprilTag2 built upon the success of the original AprilTag system with sev-
eral key improvements to its detection pipeline [12]. These include enhanced
edge detection, employing a more sophisticated method for identifying marker
boundaries and improving detection in complex environments. AprilTag2 also
features refined corner estimation, using a gradient-based approach for more
accurate corner localization, crucial for precise pose estimation. AprilTag3 [14]
further advances the system by introducing flexible tag layouts, including the
’uramaki’ design that allows data bits outside the marker border. It also intro-
duces circular and recursive tag layouts, catering to specific applications. The
detection algorithm in AprilTag3 is further optimized resulting in faster detec-
tion and higher recall rates than AprilTag2, and it introduces new families of
tags like 10x10 Uramaki marker with 48714 markers, however most AprilTags
have very poor detection speeds.

RuneTag introduces a circular marker design, offering two main variants:
RUNE43 and RUNE129 [15]. RUNE43 provides a relatively small set of 762
unique tags, while RUNE129 significantly expands the range to 19,152 tags.
However, RUNE129 faces challenges due to the dense packing of circular points,
which can lead to incorrect feature merging by ellipse detectors at low resolu-
tions, effectively reducing the maximum detection distance. RUNE129 markers
also perform poorly at steep viewing angles, limiting their usability in certain
scenarios.
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(a) AR-
ToolKit [13]

(b)
ARTag [1]

(c) AprilTag
[2]

(d)
ArUco [5]

(e) RUNE-
43 [15]

(f) RUNE-
129 [15]

(g) Fouri-
erTag [16]

(h) Chro-
maTag [17]

Fig. 2: Examples of different visual fidu-
cial marker systems: (a) ARToolKit, (b)
ARTag, (c) AprilTag, (d) ArUco, (e)
RUNE-43, (f) RUNE-129, (g) Fourier
Tag, and (h) ChromaTag.

Fourier Tags represent a depar-
ture from traditional binary coding
schemes [16]. By encoding informa-
tion in the frequency domain, Fourier
Tags offer enhanced robustness to per-
spective distortions and partial oc-
clusions. This approach allows for a
more continuous degradation of per-
formance under challenging condi-
tions, rather than the abrupt failures
often seen in binary-coded systems.
Fourier Tags require more complex
image processing algorithms, includ-
ing Fourier transforms, which can sig-
nificantly increase computational de-
mands. This leads to slower detec-
tion times, especially on resource-
constrained devices.

ChromaTag introduces color into
fiducial marker design, leveraging the
LAB color space for improved ro-
bustness to lighting and color varia-
tions [17]. By using color information,
ChromaTag can achieve faster ini-
tial detection compared to grayscale-
based systems. Operating in the
LAB color space allows ChromaTag
to maintain consistent performance
across various lighting conditions and
camera color balances. The use of
color ratios rather than absolute color
values contributes to ChromaTag’s
robustness against lighting changes.
These innovations make ChromaTag
particularly suitable for applications
in dynamic lighting environments or
when using cameras with varying
color characteristics.

Most visual fiducial marker systems define a fixed library of tags that can
recover encoded data and tag pose. These systems like [2, 5, 17] generally em-
phasize handling occlusions, improving detection speeds and maintaining ro-
bustness under various lighting conditions. The evolution of these systems has
seen improvements in the number of unique tags supported [15, 16], however
these markers have limited practical usability. There appears to be limited work
focused on developing an open-source, high-capacity marker systems that also
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maintains competitive detection speeds and robustness to varying viewing angles
and lighting conditions.

3 Marker Design

Fig. 3: An example of a PinTag.

The PinTag marker, as illustrated in Figure 3, is designed as a square visual
encoding system with four circular elements and each circular element is com-
prised of a red region and a green region. The red circular region is segmented
into 4 sectors, with 4 bits of information using contrasting shades of red which we
use to resolve the orientation as explained in Section 4.4, and the green region is
segmented into 8 sectors, with 8 bits of information. These bits are color-coded
using contrasting shades of green. Both red and green regions together encode a
total of 5 parity bits.

The tag represents the encoded information derived from a 6-digit pincode.
The encoding process converts valid pincodes to 15-bit hash keys and we compute
5 parity bits using the hash keys. The 15-bit along with 1 parity bit is encoded
twice into the tag design symmetrically using the green region. The red region
houses 4 parity bits and 12 bits for encoding the orientation. The choice of colors
is particularly significant when considered in the context of the LAB color space.
The LAB color space, visualized in Figure 4, is designed to approximate human
vision. It consists of three channels:

– L: Lightness (0 to 100)
– A: Green-Red component (-128 to +127, from green to red)
– B: Blue-Yellow component (-128 to +127, from blue to yellow)
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Fig. 4: Visualization of the LAB color space channels: L (left), A (center), and
B (right).

Similar to ChromaTag [17], PinTag’s color selection makes use of the LAB
color space as the green-red contrast maximizes the A channel range which allows
to quickly detect the red circles in the A channel and we encode the binary code
in the B channel using contrasting B values in green and red regions which easy
to detect in the B channel. This color strategy enhances the tag’s detectability
and decodability across various lighting conditions and camera types as LAB is
device-independent, meaning that it defines color regardless of the device used
to capture or display it.

4 Detector

The PinTag detector first finds red circles then attempts to look for quads in the
vicinity of the detected red circles. This method helps improve detection speeds
and reduce false positives. Orientation decoding and payload decoding is trivial
once we have the quads and their associated centroids as shown in Sections 4.4
and 4.5. Algorithm 1 summarizes the PinTag detection pipeline.

Fig. 5: This input example is intentionally simple and we use it to demonstrate
the PinTag detection pipeline.
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Algorithm 1 PinTag Detection
Require: Input image IRGB

1: ILAB ← fLAB(ILAB) ▷ Convert input to LAB color space
2: L,A,B ← ILAB

3: Cr ← FindRedCircles(A) ▷ Returns centroids of red circles
4: Q← FindQuads(L,Cr)
5: G← GroupCentroids(Q,Cr) ▷ Group centroids into quads
6: i← 0
7: while i < length(G) do
8: Gi ← G[i]
9: Ti ← GetPerspectiveTransform(Gi, Gtemplate)

10: Redi, Greeni ← TransformQuery(B, T−1
i )

11: Oi ← DecodeOrientation(Redi)
12: V aluei ← DecodeGreenSectors(Greeni, Oi)
13: FinalV aluei ← ParityCheck(V aluei)
14: Ri, ti ← EstimatePose(Gi, Ti)
15: results⊕ (FinalV aluei, Ri, ti)
16: i← i+ 1
17: end while
18: return results

4.1 Red Circle Detection

Red circles are detected using thresholding on the A-channel of the LAB color
space. Contours are found and filtered based on circularity and size. Circularity
is measured using the formula Circularity = 4π·Area

Perimeter2 , where a value closer to
1 indicates a more perfect circle. Algorithm 2 outlines the red circle detection
process.

Algorithm 2 Red Circle Detection
Require: Input image IRGB

1: ILAB ← fLAB(ILAB) ▷ Convert input to LAB color space
2: L,A,B ← ILAB

3: Mr ← 1(A > τr) ▷ Binary thresholding, we use τr = 150 for our experiments
4: C ← FindContours(Mr)
5: Clarge ← {c ∈ C : Area(c) > τa} ▷ Filter small contours
6: Csorted ← Sort(Clarge, key = area)
7: Cfiltered ← {c ∈ Csorted : IsRound(c)}
8: Centroids← {Centroid(c) : c ∈ Cfiltered} ▷ Extract centroids
9: return Centroids



8 Vishwesh Vhavle

Fig. 6: Detected red circles.

4.2 Quad Detection

Our quad detection procedure is loosely based on the one used by ArUco mark-
ers [11], however we opt for Otsu thresholding [18] instead of the Adaptive
thresholding used by ArUco makers as using such a global threshold leads to
fewer artifacts in the processed image. Further, we use our centroids create a
distance-based mask to reduce the region in which quads needs to be detected
in. Once the quads are detected, centroids are then grouped into quads.

Fig. 7: Detected Quads bounded by green and grouped centroids in blue.
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Algorithm 3 Quad Detection
Require: Input image IRGB

1: ILAB ← fLAB(ILAB), centroids
2: L,A,B ← ILAB

3: Mo ← OTSU(L) ▷ Otsu thresholding
4: Mc ← CreateDistanceFilterMask(Mo, centroids) ▷ Create Mc using distance

filter mask of centroids
5: quads← FindSquares(Mc)
6: G← GroupCentroids(centroids, quads) ▷ Group centroids into quads
7: return G

4.3 Perspective Correction

Perspective correction is performed using the Direct Linear Transform (DLT)
method [19]. Given a set of 4 corresponding points in the original image (xi, yi)
and the destination image (Xi, Yi), we solve for the homography matrix H:xi

yi
1

 ∼ H

Xi

Yi

1

 (1)

Where H is a 3x3 matrix:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (2)

The DLT algorithm solves for H by setting up a system of linear equations
and using SVD to find the solution.

Fig. 8: Perspective transform estimation illustrated for the first marker
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4.4 Orientation and Payload Decoding

We use the inverse of estimated perspective transformation H−1 to transform
and query template query locations in the B-channel and retrieve the pixel val-
ues. We then estimate thresholds for the contrasting red regions and green re-
gions.

Orientation Decoding Orientation is decoded by sampling four points around
the center in each inner circle and comparing their values to the determined red
threshold. We then estimate orientation of the tag. Figure 9(a) shows decoded
0 bits in red and 1 bits green. The outer sectors of three of the circles is set to
1 and outer sectors for the fourth circle is set to 0. The inner sectors store the
parity bits.

Payload Decoding The payload is decoded by sampling 8 points in the outer
ring and comparing their values to the determined green threshold. We use the
estimated orientation to determine the order for parsing. Figure 9(b) shows a
blue line to show where parsing begins, decoded 0 bits in red and 1 bits green.

(a) Orientation decoding (b) Payload decoding

Fig. 9: Decoding illustrated for the first marker

5 Results

To evaluate and benchmark PinTag against other widely adopted visual fiducial
markers like ArUco marker and AprilTags, we create dataset by rasterizing views
of the markers in corresponding poses in simulation as shown in Figure 10. We
evaluate against similarly sized ArUco 5x5-1000 and AprilTag 36h10, due to their
widespread use and state-of-the-art detectability even though these families of
tags offer significantly lower range. Naturally, as we increase the target distance,
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performance for all markers decrease gradually, however in our experiments, all
three markers have 100% detection upto 5m which is more than sufficient for
the intended use cases for PinTags. Figure 11 shows how the accuracy decreases
as we shift ϕ.

Fig. 10: Corresponding views of PinTags(top), AprilTags(middle), and ArUco
markers(bottom)

We can see that while PinTags fall short of the performance when compared
to AprilTags and ArUco markers in detectabilty while varying ϕ, it is still quite
competitive. Table 1 summarizes the detection times for all three markers and we
can see that PinTag has far better detection speed on average than AprilTag. All
experiments were conducted on an Intel® CoreTM i7-10750H CPU at 2.60GHz
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Fig. 11: Detection Accuracy along varying Off-axis Angles

Tag Type Minimum(s) Average(s) Maximum(s)

Pin Tags 0.0106 0.0217 0.0328
April Tags 0.2788 0.3061 0.3633
ArUco Tags 0.0050 0.0075 0.0107

Table 1: Summary of Detection Times for Different Tag Types

6 Conclusions

PinTags represents a novel visual fiducial marker technology supports up to
32,768 unique tags, PinTags offers sufficient capacity to encode all 19,000+ In-
dian pincodes while providing room for future expansion and additional infor-
mation encoding. Future work could explore handling partial occlusions, im-
provements to the data encoding, and more rigorous evaluation in real-world
scenarios.

In conclusion, our system builds upon the strengths of existing marker tech-
nologies while introducing innovations to meet the specific demands of high-
capacity encoding and robust pose estimation with fast detection speeds. Pin-
Tags combines the benefits of systems like AprilTags, ArUco and ChromaTag
markers with novel design elements to achieve both high capacity and reliable
performance under various conditions.
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Fig. 12: Detection of PinTags in real world scene.
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