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Figure 1: Camera3DMM enables 3D reconstruction of human heads under perspective distortions. We visualize selfie image
samples from the NoW dataset[Sanyal et al. 2019] on top, and our FLAME fitting results on bottom.

Abstract
3D human head modeling is often formulated under scaled-
orthographic assumptions, which fail in close-range scenarios such
as handheld mobile device captures, where perspective distortion
dominates and leads to unstable and inconsistent reconstructions.
We propose Camera3DMM, a novel perspective-aware 3D human
head reconstruction framework that jointly estimates 3D facial ge-
ometry and camera parameters from a single image. To address the
lack of perspective-rich training data, we leverage high-quality 3D
RGB scans to render images with pseudo ground truth labels across
diverse focal lengths and perspective distortions, thereby enabling
explicit modeling of perspective variability. Trained on this data,
Camera3DMM achieves stable and consistent reconstructions under
varying intrinsics and demonstrates a 22% improvement in mesh
quality over the best-performing baseline. These results establish
Camera3DMM as a strong baseline for perspective-aware 3D face
reconstruction, particularly in challenging close-range scenarios.

CCS Concepts
• Computing methodologies → Mesh models; Computer vision.
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1 Introduction
With recent breakthroughs in 3D rendering techniques, 3D Human
Head Modelling has become a well sought-after use case for dig-
ital content creation, telepresence, facial biometrics, AR/VR, and
entertainment. The task of 3D reconstruction of coarse head geom-
etry, sans fine grained high frequency geometrical details, from 2D
images is sufficient for most downstream applications and is a fun-
damental problem, as the majority of data related to human heads
exists in the form of images. The prevailing approach for modeling
human heads is to use 3DMorphable parametric models FLAME [Li
et al. 2017] and NPHM [Giebenhain et al. 2023]. In these models,
the head is represented by parameterizing its person-specific shape,
expressions, and poses, which enables articulation across joints
typically located near the jaw, neck, etc.

A common approach to this problem is to regress the parametric
model from images. In this line of work, the majority of existing
methods[Danecek et al. 2022; Deng et al. 2019; Retsinas et al. 2024]
assume a scaled-orthographic projection, which greatly simplifies
optimization. However, in practical scenarios such as selfie images,
video calls, or AR try-on applications (using consumer devices
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like smartphones and laptops), the human face is often closer to
the camera, where perspective distortion becomes dominant thus
violating the scaled-orthographic assumption. This leads to incon-
sistent reconstruction of face geometry across frames as perspective
distortions in images are considered due to false geometric varia-
tion in face geometry. Nevertheless, some work has explored fixed
field-of-view approaches [Wang et al. 2024] or predicted dense
facial representations to optimize the head model parameters for
a full perspective projection setup [Giebenhain et al. 2025; Wood
et al. 2022]. However, the prediction of the parameters of the full
perspective camera remains largely underexplored in head model
regression. The primary limitation is the scarcity of large-scale
datasets containing 3D face reconstructions captured with diverse
camera intrinsics. Most existing feed-forward head model regres-
sors are trained and evaluated on images acquired under imaging
conditions where scaled-orthographic projection provides adequate
approximation. As a result, these methods cannot capture the com-
plex variability introduced by different focal lengths, fields of view,
and close-range distortions. This scarcity of accurate, diverse train-
ing data has slowed progress toward perspective-aware human
head reconstruction. Recently, field-of-view prediction has shown
promising results in human body reconstruction from single im-
ages [Patel and Black 2025]. This success is encouraging for extend-
ing such approaches to human head modeling. Recent advances in
3D rendering, combined with the democratization of high-quality
3D RGB scan datasets such as NPHM dataset [Giebenhain et al.
2023], have opened new possibilities for addressing this challenge.

To this end, we propose Camera3DMM, a novel method for 3D
parametric human head reconstruction that incorporates camera
parameter prediction directly from a single input image. Specifi-
cally, we train separate regressors (named prior models) for shape,
expression, and pose parameters of the FLAMEmodel, as well as for
camera parameters. We leverage the NPHM dataset’s RGB scans, es-
timating FLAME parameters for rigid registration to serve as pseudo
ground truth labels. We then render these meshes with varying
camera intrinsics, lighting conditions, and random backgrounds,
creating a dataset of images, FLAME parameters, and camera pa-
rameters. This enables us to provide high-quality supervision for
our prior networks. Finally, during inference, we further optimize
our feed-forward estimates using sparse 2D keypoints and pro-
jected 3D landmarks from our FLAME estimates. We demonstrate
that joint optimization with the estimated FLAME parameters from
RGB scans and supervision of full perspective camera parameters
leads to substantial quantitative and qualitative improvements over
existing baselines, including a 22% relative improvement in mesh
reconstruction quality compared to the best prior method on the
NPHM dataset hold-out set.

2 Method
Our framework for 3D human head modeling from a single RGB
image under a perspective camera model is composed of a data
generation module and a two-phase modeling pipeline. In the first
phase, four dedicated encoders are trained to estimate shape, ex-
pression, pose, and camera parameters. In the second phase, a light-
weight linear optimization module refines these initial estimates to
achieve higher reconstruction fidelity. In the following section, we

provide an overview of these components along with the relevant
preliminaries.

2.1 Camera Models
In this work, we consider two commonly used camera models
for projecting a 3D head mesh M ∈ R3×𝑛 , where each column
corresponds to a vertex in canonical 3D space, onto the 2D image
plane.

Scaled-Orthographic Model: Under the scaled-orthographic
assumption, the 2D projections 𝑉 ∈ R2×𝑛 are obtained as

𝑉 = 𝑠 Π(M) + 𝑡, (1)

where 𝑠 ∈ R is isotropic scale, Π is the orthographic 3D-to-2D
projection matrix, and 𝑡 ∈ R2 is the 2D translation vector.

Full-Perspective Model: In the full-perspective case, the pro-
jection is expressed as

𝑉 = Π
(
𝐾
(
𝑅M + 𝑡

) )
, (2)

where 𝑅 ∈ 𝑆𝑂 (3) and 𝑡 ∈ R3 denote the 3D rotation and translation
of the mesh, 𝐾 ∈ R3×3 is the intrinsic camera matrix, and Π(·)
is the perspective division operator that maps homogeneous 3D
coordinates to 2D by normalizing with depth.

2.2 Dataset generation
Our approach leverages theNeural Parametric HeadModels (NPHM)
dataset [Giebenhain et al. 2023], which provides high-quality 3D
head scans with FLAME topology meshes but lacks corresponding
FLAME parameters. Following the rigid alignment optimization
methodology proposed by the NPHM authors [Giebenhain et al.
2023], we employ a two-stage optimization process that yields shape
parameters (𝛽 ∈ R300), expression parameters (𝜓 ∈ R100), and jaw
pose parameters for each scan.

Figure 2: Sample Visualizations of our Rendering pipeline
wih Flame meshes

In our dataset generation, we emphasize lower focal lengths
and closer camera distances to introduce perspective-induced dis-
tortions, using eight configurations ranging from 600–2400 pixels
focal length with distances of 0.3–1.2 meters. To train a more robust
camera prior network, more images are rendered at shorter focal
lengths where perspective distortions are more prevalent. Images
are generated at 512×512 resolution, with random backgrounds
from [Quattoni and Torralba 2009], and the projection center fixed
at the image center.

Following prior work [Danecek et al. 2022; Deng et al. 2019;
Retsinas et al. 2024] we represent head orientation using a rotation
parameter 𝜃rot ∈ R3, defined in the canonical coordinate system of
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Figure 3: Overview of the proposed method for 3D head reconstruction: (1) Data Generation, (2) Data Transform, (3) Network
Training, and (4) Inference with Optimization.

FLAME. To introduce pose variation, we apply random head rota-
tions within ±0.25 radians. The camera is constrained to translation
along its Z-axis with a fixed rotation 𝑅. This setup simplifies the
parameter space by capturing all head orientation changes through
𝜃rot. Furthermore, we maintain a proportional relationship between
the focal length and camera distance to preserve perspective dis-
tortion while maximizing face resolution.

Training Dataset: Our training dataset comprises 140,000 im-
ages derived from 22 scans of 378 subjects. The data encompasses
a wide range of ethnicities, shapes, and expressions, with aligned
FLAME parameters and ground-truth intrinsics for each sample.
Figure 2 shows samples of our rendered dataset.

Evaluation Data: Due to the lack of datasets with ground-
truth camera intrinsics and 3DMM parameters, we evaluate Cam-
era3DMM on a held-out test set. This set contains 16,500 images of
20 subjects not seen during training.

2.3 Camera3DMM Training
We employ MobileNetV3 networks for four prediction tasks. The
shape and expression networks use large MobileNetV3 encoders
to predict FLAME shape parameters (𝛽 ∈ R300) and expression pa-
rameters (𝜓 ∈ R100), respectively. The pose and camera networks
use small MobileNetV3 encoders, where the pose network out-
puts FLAME-space rotation (𝜃𝑟𝑜𝑡 ) and jaw pose parameters (𝜃 𝑗𝑎𝑤 ),
and the camera network predicts intrinsic parameters (K′) for the
cropped and resized 224x224 image, which includes focal lengths
(𝑓𝑥 , 𝑓𝑦 ) and principal point coordinates (𝑐𝑥 , 𝑐𝑦 ), as well as extrinsic
translation parameter (𝑡𝑧 ).

Our training objective combines multiple loss terms, each cor-
responding to a specific prediction task. We define a global loss
term that supervises all tasks and task-specific objectives for shape,
expression, pose, and camera parameters.

Global Loss. We define a global supervision loss that enforces
consistency across landmark and vertex predictions:

Lglobal = ∥P′
𝑔𝑡 − P′

𝑝𝑟𝑒𝑑
∥22 + ∥M𝑔𝑡 −M𝑝𝑟𝑒𝑑 ∥22, (3)

where P′ denotes a combination of FAN landmarks [Bulat and Tz-
imiropoulos 2017] and MediaPipe landmarks [Lugaresi et al. 2019]
in cropped image space, andM denotes FLAME mesh vertices.

Shape Loss. The shape loss supervises the prediction of FLAME
shape coefficients 𝛽 :

L𝛽 = ∥𝛽𝑔𝑡 − 𝛽𝑝𝑟𝑒𝑑 ∥22 + Lglobal + 𝜆𝛽 ∥𝛽𝑝𝑟𝑒𝑑 ∥22 . (4)

Expression Loss. The expression loss supervises FLAME ex-
pression coefficients𝜓 :

L𝜓 = ∥𝜓𝑔𝑡 −𝜓𝑝𝑟𝑒𝑑 ∥22 + Lglobal + 𝜆𝜓 ∥𝜓𝑝𝑟𝑒𝑑 ∥22 . (5)

Pose Loss. The pose loss supervises head rotation 𝜃𝑟𝑜𝑡 and jaw
pose 𝜃 𝑗𝑎𝑤 :

L𝜃 = ∥𝜃𝑟𝑜𝑡𝑔𝑡 −𝜃𝑟𝑜𝑡
𝑝𝑟𝑒𝑑

∥22+ ∥𝜃
𝑗𝑎𝑤

𝑔𝑡 −𝜃 𝑗𝑎𝑤

𝑝𝑟𝑒𝑑
∥22+Lglobal+𝜆𝜃 ∥𝜃𝑝𝑟𝑒𝑑 ∥22 . (6)

Camera Loss. The camera loss supervises intrinsic and extrinsic
parameters. Following Patel et al. [Patel and Black 2025], we design
an asymmetric focal length loss L𝑓 that penalizes underestimation
of focal length more heavily than overestimation:

L𝑓 =

{
3∥ 𝑓𝑔𝑡 − 𝑓𝑝𝑟𝑒𝑑 ∥22 if 𝑓𝑝𝑟𝑒𝑑 < 𝑓𝑔𝑡 ,

∥ 𝑓𝑔𝑡 − 𝑓𝑝𝑟𝑒𝑑 ∥22 if 𝑓𝑝𝑟𝑒𝑑 ≥ 𝑓𝑔𝑡 ,
(7)

The full camera loss is then

LK = L𝑓 + ∥𝑡𝑔𝑡𝑧 − 𝑡𝑝𝑟𝑒𝑑𝑧 ∥22 + ∥c𝑔𝑡 − c𝑝𝑟𝑒𝑑 ∥22
+ Lglobal + 𝜆K ∥K𝑝𝑟𝑒𝑑 ∥22,

(8)

where 𝑓 = (𝑓𝑥 , 𝑓𝑦) is the focal length and c = (𝑐𝑥 , 𝑐𝑦) is the princi-
pal point.

2.4 Inference with Optimization
During inference, we optimize all predicted parameters using the
landmark loss Llmk, defined between the MediaPipe landmarks P

′
𝑚

and the projected landmarks from the predicted mesh Mpred.
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Figure 4: Vertex error across focal length values for different
methods: DECA (blue), EMOCAv2 (orange), SMIRK (green),
and Camera3DMM (red).

3 Results

Table 1: Method Comparison
Method Landmarks (↓) Vertex (↓)
DECA 1.173 ± 36.422 34.8 ± 23.8
EMOCAv2 1.165 ± 36.466 34.5 ± 23.5
SMIRK 1.040 ± 31.890 5.9 ± 7.3
Ours (Ortho) 0.261 ± 0.256 5.8 ± 6.0
Ours (w/o Optim) 0.367 ± 0.290 5.7 ± 5.9
Ours 0.073 ± 0.039 4.5 ± 4.6

As shown in Table 1, our method outperforms DECA [Deng et al.
2019], EMOCA-v2 [Danecek et al. 2022], and SMIRK [Retsinas et al.
2024], achieving the lowest mean losses for both landmarks and
vertex error. Compared to the best-performing prior method SMIRK,
we improve vertex error that actually defines the 3D head modeling
performance by about 22%.

As shown in Table 1, the ablation results clarify the source of im-
provements in our approach. Replacing our perspective projection
with an orthographic one leads to a clear drop in accuracy. Using
perspective projection without the final optimization step yields a
modest improvement, but the largest gains are achieved when both
perspective modeling and optimization are combined. This demon-
strates that the improvements are not solely due to training with
a perspective-aware dataset, but arise from the complete pipeline
that explicitly models perspective and refines predictions through
optimization.

Figure 4 illustrates the comparative performance of our method
against existing baselines across varying focal lengths.While our ap-
proach consistently achieves lower vertex errors than DECA [Deng
et al. 2019], EMOCA [Danecek et al. 2022], and SMIRK [Retsinas
et al. 2024], the most pronounced improvements are observed at
shorter focal lengths, where perspective distortions are strongest
and scaled orthographic assumptions break down. In this chal-
lenging regime, our method provides a clear margin of advantage,
highlighting its robustness to geometric distortions that degrade
the performance of scaled-orthographic-based models. This behav-
ior directly validates the core motivation of our work: by explicitly
incorporating perspective modeling, we are able to handle cases
where classical scaled orthographic formulations fail, thereby ad-
dressing a fundamental limitation in prior approaches.

Qualitative comparisons in Figure 5 further highlight the effec-
tiveness of our approach across different focal lengths. The FLAME

Figure 5: FLAME meshes predicted by DECA, EMOCAv2,
SMIRK, and Camera3DMM(Ours) against ground truth.

renderings obtained with our method exhibit more accurate facial
alignment and fewer artifacts than those produced by the baselines.
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