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Abstract—This research study introduces Alfred, a novel open-
source Autonomous Mobile Robot (AMR) platform and a physi-
cal testbed that enables the integration of virtual scenarios. This
system allows for the development and evaluation of algorithms
for localization, perception, and path planning in a safe and
efficient manner. By combining virtual and physical elements,
our camera-based localization testbed facilitates comprehensive
testing of AMRs, ensuring their readiness for real-world deploy-
ment. The modular design of Alfred, with parts sourced within
the Indian subcontinent, makes it a cost-effective and adaptable
solution for robotics research and development. We demonstrate
the effectiveness of our platform through experiments in local-
ization, mapping, and navigation, showcasing its potential for
advancing AMR technology.

Index Terms—Autonomous Mobile Robot, Testbed, Simulation,
Modular Design, Localization, Path Planning

I. INTRODUCTION

The development and testing of autonomous mobile robots
(AMRs) for safe and efficient deployment in real-world envi-
ronments are crucial challenges in robotics research [1]. While
existing platforms offer ease of use and accessibility, they are
often expensive and lack the flexibility to fine-tune various
aspects related to sensing and compute capabilities [2]. This
limitation creates a significant bottleneck in adapting platforms
to specific functionalities being tested.

Our project, Alfred, aims to address these challenges by
creating an environment where researchers can run real-world
simulations and test different algorithms in a flexible, con-
trolled, and economical way. The combination of a physical
testbed and a ground vehicle platform allows for testing
autonomous navigation in various indoor scenarios, such as
offices, homes, shopping malls, and airports [3].

The key contributions of this paper are:

• An open-source, modular AMR platform designed with
parts sourced within the Indian subcontinent.

• A physical testbed that integrates virtual scenarios for
comprehensive testing using a camera-based localization
system for accurate positioning of AMRs within the
testbed.

* These authors contributed equally to this work.

II. AUTONOMOUS MOBILE ROBOT

A. Modelling

Alfred’s design philosophy centers around modularity and
accessibility. The robot’s structure is composed of interchange-
able modules consisting of the Intel NUC 12 Pro (CPU), the
NVIDIA AGX Orin (GPU), the Velodyne VLP-16 LiDAR and
the Intek RealSense D455 RGB-D Camera. T, allowing for
easy customization and upgrades [4]. This approach not only
enhances flexibility but also simplifies maintenance and repair
processes. The separation of CPU and GPU promotes the
scalability of computational hardware as required for intended
specific tasks. While the addition of LiDAR supports high-
resolution simultaneous localization and mapping (SLAM) as
used in most fully autonomous vehicles, we also provide sup-
port for RGB-D cameras to support visual-SLAM solutions,
which can be a more cost-effective deployment.

Fig. 1. Alfred: Autonomous Mobile Robot

A key aspect of our design is the sourcing of components
within the Indian subcontinent. This decision was driven by
the need to create a platform that is not only cost-effective but
also promotes local manufacturing and reduces dependency
on international supply chains [5]. Major components such as
the chassis, motors, and various sensors were sourced from
Indian manufacturers and suppliers, ensuring the platform
is reproducible by academics in the Indian sub-continent,
and we hope this will promote mobile robotics research and
development.



The modular design extends to the robot’s software archi-
tecture as well. We implemented a ROS (Robot Operating Sys-
tem) based framework, allowing for easy integration of new
algorithms and sensors [6]. This modular software approach
complements the hardware design, creating a highly adaptable
platform for various research scenarios.

B. Power Supply Design

The power supply system is a critical component of
any AMR, directly influencing its operational efficiency and
longevity [7]. Alfred is equipped with a 14.8V 60Ah 4S12P
3C Li-ion battery pack, providing a stable DC power supply
for up to 8 hours of operation. To ensure flexibility and
stability in power management, we utilize five DP50V5A
programmers. These programmers allow for stable and easily
re-programmable DC supply, facilitating the integration of new
devices and ensuring continuous operation without significant
downtime.

Fig. 2. Power Supply Module

C. Localization and Mapping

Accurate localization and mapping are fundamental to au-
tonomous navigation [8]. Alfred incorporates a multi-modal
approach to these tasks, leveraging both the physical testbed
and onboard sensors.

For indoor environments, the testbed facilitates precise
localization of the AMR within a controlled setting. This is
achieved through a network of ceiling-mounted cameras that
track fiducial markers on the robot, providing ground truth
position data [9].

For outdoor scenarios and to create a more generalizable
solution, Alfred is equipped with a Velodyne VLP-16 Li-
DAR sensor. This allows for simultaneous localization and
mapping (SLAM) of the environment using an off-the-shelf
implementation of the Fast LiDAR Odometry and Mapping
(F-LOAM) algorithm [10]. F-LOAM demonstrates impressive
performance in both indoor and outdoor environments, pro-
viding robust localization and mapping capabilities.

To enhance navigation capabilities, we implement an oc-
cupancy grid mapping system [11]. This system discretizes
the environment into a grid, where each cell represents the

probability of occupancy. The occupancy grid is continuously
updated based on sensor data, providing a real-time representa-
tion of the robot’s surroundings for path planning and obstacle
avoidance.

Fig. 3. An example of a map created using F-LOAM

D. Controls

Precise control is essential for the effective operation of
AMRs [12]. Alfred integrates a differential drive controller
using a system of three PID (Proportional-Integral-Derivative)
controllers. These controllers manage linear velocity (Vx) in
the X-direction, linear velocity (Vy) in the Y-direction, and
angular velocity (ω) along the Z-axis.

The control system relies on feedback from the F-LOAM
system, enabling accurate adjustments to the robot’s move-
ments. This closed-loop control ensures that Alfred can navi-
gate complex environments with precision, adapting to various
surface conditions and compensating for external disturbances.

Fig. 4. Control System Architecture

E. Waypoint Navigation and Planning

Efficient path planning is crucial for autonomous navigation
in dynamic environments [13]. Alfred implements a waypoint
navigation system that allows users to define endpoints for the
robot’s pathway. The system then utilizes the occupancy grid
generated from F-LOAM data to plan a dense trajectory using
the A* path-planning algorithm [14].

To ensure smooth navigation, we implement a post-
processing step where the initial trajectory is subsampled and
fitted with C1 continuous Bezier splines [15]. This approach
generates smooth trajectories that respect the robot’s kinematic
constraints and provide a more natural and efficient motion
profile.



Fig. 5. Occupancy Grid (Left) and planned trajectory plotted on Rviz (Right)

III. AUGMENTED PHYSICAL TESTBED

A. Architecture

The testbed architecture consists of a controlled indoor envi-
ronment created using six cameras mounted on the ceiling. The
system utilizes a network of consists of six different Nvidia
Jetson Nano, each handling a single camera. This setup allows
for remote operation of the testbed over a Local Area Network
(LAN). The Local Area Network consists of a wifi router
connected to an external college network using ethernet for any
external resource requirements. Each compute node connects
with this router individually using their wifi modules, making a
Local Area Network. The Nvidia Jetson AGX Xavier is used
as a server to connect with all the camera compute nodes
for any communication related to mapping and localization.
Camera compute nodes act as clients to this server. We use
the UDP protocol to promote faster transmission of packets.

The camera arrangement ensures partial overlap in the field
of view between adjacent cameras, eliminating blind spots
within the testbed area. This comprehensive coverage is crucial
for accurate tracking and localization of the AMR.

Fig. 6. View of the Testbed with Cameras and Jetson Nanos mounted on the
ceiling

B. Methodology

Our testbed creation pipeline involves multimodal image
stitching and pixel-to-world coordinate mapping. The process
begins with the collection of LiDAR data from 85 identified

points on the testbed floor. These points are then labeled
with AprilTags for precise detection by the ceiling-mounted
cameras.

Fig. 7. Arrangement of the Planes for LiDAR Data Collection (Left) and
arrangement of the AprilTags for Camera Data Collection (Right)

The LiDAR data is processed using the Open3D library,
applying RANSAC line fitting to accurately determine the real-
world coordinates of each point. Simultaneously, the cameras
detect the AprilTags, providing pixel coordinates for each point
in the camera frame of reference.

Fig. 8. Point-Cloud Processing Pipeline

Fig. 9. RANSAC Line-Fitting for Coordinate Localization

Using these correspondences, we estimate a projective trans-
formation homography using Direct Linear Transform. This
mapping allows us to accurately transform between camera
pixel coordinates and real-world coordinates, enabling precise
localization of the AMR within the testbed. The compute unit
connected to the detecting cameras detects the camera frame
coordinate of the mobile robot and then converts it into to the
LiDAR frame coordinates in place. These position coordinates
are then sent to the server in a packet over the UDP network.
The server further maps the obtained position coordinates to
the global map of the testbed. In this way, as the autonomous
robot vehicle moves in the testbed, our multi-camera testbed
setup localizes the AMR in the testbed.



C. Results

The results of our stitching process demonstrate high ac-
curacy and comprehensive coverage of the surrounding envi-
ronment. We successfully reduced the system’s latency from
4000 milliseconds to an average of 46 milliseconds, allowing
us to record trajectories of the AMR in motion at an average
of 21 FPS. By evaluating the L2 distance errors of the LiDAR-
Camera mapping against some of the corresponding points that
were left out of estimation we were able to conclude that the
testbed is able to localize AprilTags with a mean error of less
than 2 cm.

Fig. 10. Final view of the stitched testbed with a trajectory indicating the
Real-Time Tracking of an AprilTag at 21 FPS

Furthermore, by implementing a local area network (LAN)
for communication between the main server and compute
units, we significantly reduced the round-trip time (RTT)
for data transmission. This optimization resulted in more
consistent and reliable communication, as evidenced by the
lower standard deviation in RTT measurements.

Fig. 11. Current RTT of Testbed on Data Transmission

D. Simulator

Simulations play a crucial role in the development and
deployment of AMRs, offering a safe and controlled envi-
ronment for testing various scenarios [16]. We have created
a virtual representation of our testbed in Gazebo with ROS
Noetic on Ubuntu 20.04 and Python 3.10. This simulation
environment allows us to train, test, and tune our algorithms
before deploying them on the physical platform.

Recent trends in robotics research have seen an increased
focus on Deep Reinforcement Learning (DRL) for develop-
ing adaptive and robust control policies [17]. Our simulator
provides an ideal platform for implementing and evaluating
DRL algorithms, allowing for rapid iteration and optimization
of AMR behaviors without the risks associated with physical
testing.

Fig. 12. Testbed in Gazebo Simulator

IV. CONCLUSION

In this paper, we presented Alfred, an open-source Au-
tonomous Mobile Robot platform with an augmented physical
testbed. Our modular design approach, coupled with locally
sourced components, offers a cost-effective and flexible so-
lution for robotics research and development. The integration
of advanced localization, mapping, and navigation algorithms
demonstrates the platform’s capability to handle complex
autonomous navigation tasks.

The physical testbed, with its multi-camera setup and effi-
cient image stitching pipeline, provides a robust environment
for testing and validating AMR algorithms. The addition of
a virtual simulator further enhances the platform’s utility,
allowing for safe and rapid prototyping of new ideas.

Future work will focus on expanding the capabilities of
Alfred, including the implementation of learning-based ap-
proaches for navigation and decision-making as well as explor-
ing how to bridge the simulation-to-real gap better. We also
plan to open-source our platform, encouraging collaboration
and accelerating the advancement of AMR technology.
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