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1 FLAME Model
We employ the FLAME model [2], a 3DMM that parameterizes
shape, expression, and pose in a unified framework. FLAME rep-
resents facial shape variations through 𝛽 ∈ R300, which encodes
identity-dependent geometry, and expression-specific deformations
through𝜓 ∈ R100. Pose articulation is modeled with joint rotations,
where 𝜃jaw ∈ R3, 𝜃eyes ∈ R6, and 𝜃neck ∈ R3 denote the jaw, eyes,
and neck rotations, respectively. In this work, we do not explicitly
model the eye and neck poses.

2 Data Preparation
Our approach leverages theNeural Parametric HeadModels (NPHM)
dataset [1], which provides high-quality 3D head scans with FLAME
topology meshes but lacks corresponding FLAME parameters. To
address this, we develop a gradient-based optimization pipeline to
fit FLAME parameters to the FLAME meshes.

3 FLAME Parameter Estimation
Following the methodology proposed by the NPHM authors [1], we
employ a two-stage optimization process. First, we identify shape
parameters across all scans of each subject to maintain identity
consistency. Subsequently, we estimate expression and jaw parame-
ters for each individual scan. This process yields shape parameters
(𝛽 ∈ R300), expression parameters (𝜓 ∈ R100), and jaw pose param-
eters for each scan.

The optimization minimizes the vertex-to-vertex distance be-
tween the NPHM provided FLAME mesh and the FLAME recon-
struction through parameters (𝛽,𝜓, 𝜃 𝑗𝑎𝑤 ) along with regularisation
(R):

L𝑓 𝑖𝑡 = | |M𝐹𝐿𝐴𝑀𝐸 − FLAME(𝛽,𝜓, 𝜃 𝑗𝑎𝑤) | |22 + R . (1)
where FLAME(𝛽,𝜓, 𝜃 𝑗𝑎𝑤) | |22 denotes the FLAME mesh vertices
parameterized by shape, expression, and jaw pose, andM𝐹𝐿𝐴𝑀𝐸

represents the NPHM vertices.
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(a) Scan-to-FLAME error heat map

(b) FLAME-to-FLAME error heat map

Figure 1: Visualization of 8 random scans of a subject with
estimated FLAME meshes and error heat maps.

4 Training Setup and Hyperparameters
The model is trained on a single NVIDIA A6000 GPU using the
setup and hyperparameters listed in Table 1. Hyperparameters and
loss weights are fixed across all datasets, and selected based on
validation performance to ensure fairness in comparison.

5 Inference-Time Optimization
To further refine predictions at test time, we employ an optional
gradient-based optimization procedure that fine-tunes FLAME pa-
rameters using the initial network predictions as initialization. This
inference optimizer iteratively adjusts shape, expression, pose, and
jaw parameters to minimize reprojection error between projected
landmarks from the predicted mesh and detected 2D MediaPipe
landmarks, while maintaining proximity to the network’s initial
estimates through regularization.

The optimization minimizes the following objective:

L𝑙𝑚𝑘 = | |P
′
𝑚 − P

′

𝑝𝑟𝑒𝑑
∥22 + R𝑝𝑎𝑟𝑎𝑚𝑠 , (2)
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Table 1: Training hyperparameters and data augmentations.

Hyperparameter Value

Optimizer Adam
Learning rates Shape/Expr/Pose/Camera: 1 × 10−4
Schedulers CosineAnnealingWarmRestarts (𝑇0≈0.1

of total steps; 𝜂min = 0.1·LR for shape,
0.01·LR for others)

Weight decay 0
Global loss mix-in Landmarks (MP/FAN): 30, Vertex: 10000,

Global: 0.35
Shape losses MSE: 1.0; Reg: 0.01
Expression losses MSE: 0.1; Reg: 0.01; Jaw MSE: 1000; Jaw

Reg: 1.0
Pose losses Pose MSE: 10
Camera losses Focal: 1 × 10−5 (penalty multiplier 3);

Center: 10−3; Translation: 10
Input resolution 224 × 224

Data augmentations RandomBrightnessContrast (p=0.5),
RandomGamma (p=0.5), ColorJitter
(brightness=0.05, contrast=0.05,
saturation=0.05, hue=0.05, p=0.25),
CLAHE (p=0.255), RGBShift (p=0.25),
Blur (p=0.1), GaussNoise (p=0.5)

where | |P′
𝑚 − P

′

𝑝𝑟𝑒𝑑
∥22 denotes landmark reprojection error, and

R𝑝𝑎𝑟𝑎𝑚𝑠 provides regularization on parameter deviations from net-
work predictions.

The hyperparameters for the inference optimizer are detailed
in Table 2. This optimization is performed independently for each
input image and typically converges within 40 iterations, providing
refined geometry particularly beneficial for challenging cases with
extreme poses or occlusions.

6 Evaluation Metrics
We evaluate our approach using two complementary metrics: re-
projection error on landmarks and mesh reconstruction error. For
landmarks, we follow the widely used MediaPipe indexing conven-
tion, but instead of using detections from the MediaPipe library, we
compute reprojection errors between the predicted FLAME mesh
landmarks and the ground-truth FLAME landmarks at the same
indices. Specifically, given predicted 2D landmark positions p̂𝑖 and
ground-truth 2D positions p𝑖 for 𝑁 indexed landmarks, the mean
reprojection error is defined as

𝐸lm =
1
𝑁

𝑁∑︁
𝑖=1

∥p̂𝑖 − p𝑖 ∥2, (3)

and we report the mean 𝜇 (𝐸lm) and standard deviation 𝜎 (𝐸lm)
across the evaluation set.

To assess mesh quality, we compute vertex-to-vertex reconstruc-
tion error between the predicted mesh v̂𝑗 and ground-truth mesh

Table 2: Inference-time optimization hyperparameters.

Hyperparameter Value

Optimizer Adam
Learning rate 1 × 10−2
Learning rate decay Factor: 0.5, Patience: 30

iterations
Maximum iterations 40

Loss weights
Landmark (MediaPipe) 1.0
Vertex consistency 0.1
Landmark optimization weight 1000.0

Optimized parameters
Shape (𝛽) Yes
Expression (𝜓 ) Yes
Pose Yes
Jaw (𝜃jaw) Yes

v𝑗 , with𝑀 vertices:

𝐸mesh =
1
𝑀

𝑀∑︁
𝑗=1

∥v̂𝑗 − v𝑗 ∥2 . (4)

These two metrics together capture both the 2D consistency of
reprojections and the 3D fidelity of the reconstructed mesh geome-
try.

7 Limitations and Future Work
While our method demonstrates effective 3D geometry reconstruc-
tion from monocular RGB input, several avenues remain for fu-
ture exploration. For example, explicit modeling of teeth, and de-
tailed eyelid deformation would provide more complete facial rep-
resentations. Additionally, incorporating temporal regularization
techniques could better exploit inter-frame coherence in video
sequences, leading to more stable and temporally consistent recon-
structions.

8 Conclusion
We have presented Camera3DMM, a novel approach for 3D head
modeling that explicitly models full perspective camera parame-
ters alongside traditional 3DMM parameters. Overall, our work
demonstrates that careful consideration of camera modeling and
targeted synthetic data rendering can significantly improve 3D head
modeling in practical scenarios with high perspective distortions.
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Figure 2: Qualitative Comparisons of FLAME meshes predicted by DECA, EMOCAv2, SMIRK, and Camera3DMM(Ours) against
ground truth.



SA Technical Communications ’25, December 15–18, 2025, Hong Kong, Hong Kong Vhavle et al.

Figure 3: Qualitative Comparisons along with corresponding Vertex error of FLAME meshes predicted by DECA, EMOCAv2,
SMIRK, and Camera3DMM(Ours) against ground truth.
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