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1 FLAME Model

We employ the FLAME model [2], a 3DMM that parameterizes
shape, expression, and pose in a unified framework. FLAME rep-
resents facial shape variations through f € R3%, which encodes
identity-dependent geometry, and expression-specific deformations
through i € R1%, Pose articulation is modeled with joint rotations,
where Qjaw € R3, Geyes € R, and Oneck € R3 denote the jaw, eyes,
and neck rotations, respectively. In this work, we do not explicitly
model the eye and neck poses.

2 Data Preparation

Our approach leverages the Neural Parametric Head Models (NPHM)
dataset [1], which provides high-quality 3D head scans with FLAME
topology meshes but lacks corresponding FLAME parameters. To
address this, we develop a gradient-based optimization pipeline to
fit FLAME parameters to the FLAME meshes.

3 FLAME Parameter Estimation

Following the methodology proposed by the NPHM authors [1], we
employ a two-stage optimization process. First, we identify shape
parameters across all scans of each subject to maintain identity
consistency. Subsequently, we estimate expression and jaw parame-
ters for each individual scan. This process yields shape parameters
(B € R3%9), expression parameters (i € R1%?), and jaw pose param-
eters for each scan.

The optimization minimizes the vertex-to-vertex distance be-
tween the NPHM provided FLAME mesh and the FLAME recon-
struction through parameters (f, 1, 04w) along with regularisation
(R):

L = [IMrLame — FLAME(B, ¥, 0jaw) |15 + R. (1)

where FLAME(S, ¢, 0 jaw)||% denotes the FLAME mesh vertices
parameterized by shape, expression, and jaw pose, and MprapmE
represents the NPHM vertices.
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(a) Scan-to-FLAME error heat map
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(b) FLAME-to-FLAME error heat map

Figure 1: Visualization of 8 random scans of a subject with
estimated FLAME meshes and error heat maps.

4 Training Setup and Hyperparameters

The model is trained on a single NVIDIA A6000 GPU using the
setup and hyperparameters listed in Table 1. Hyperparameters and
loss weights are fixed across all datasets, and selected based on
validation performance to ensure fairness in comparison.

5 Inference-Time Optimization

To further refine predictions at test time, we employ an optional
gradient-based optimization procedure that fine-tunes FLAME pa-
rameters using the initial network predictions as initialization. This
inference optimizer iteratively adjusts shape, expression, pose, and
jaw parameters to minimize reprojection error between projected
landmarks from the predicted mesh and detected 2D MediaPipe
landmarks, while maintaining proximity to the network’s initial
estimates through regularization.
The optimization minimizes the following objective:
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Table 1: Training hyperparameters and data augmentations.
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Table 2: Inference-time optimization hyperparameters.

Hyperparameter Value Hyperparameter Value

Optimizer Adam Optimizer Adam

Learning rates Shape/Expr/Pose/Camera: 1 X 1074 Learning rate 1x1072

Schedulers CosineAnnealingWarmRestarts (Tp ~ 0.1 Learning rate decay Factor: 0.5, Patience: 30
of total steps; min = 0.1-LR for shape, iterations
0.01-LR for others) Maximum iterations 40

Weight decay. . 0 Loss weights

Global loss mix-in Landmarks (MP/FAN): 30, Vertex: 10000, Landmark (MediaPipe) 10
Global: 0.35 )

Shape losses MSE: 1.0; Reg: 0.01 Vertex con51stf:n<':y ) . 0.1

Expression losses MSE: 0.1; Reg: 0.01; Jaw MSE: 1000; Jaw Landmark optimization weight 1000.0
Reg: 1.0 Optimized parameters

Pose losses Pose MSE: 10 Shape (f) Yes

Camera losses Focal: 1 X 107> (penalty multiplier 3); Expression (i) Yes
Center: 10~3; Translation: 10 Pose Yes

Input resolution 224 X 224 Jaw (9jaw) Yes

Data augmentations RandomBrightnessContrast (p=0.5),
RandomGamma (p=0.5), ColorJitter
(brightness=0.05, contrast=0.05,
saturation=0.05, hue=0.05, p=0.25),
CLAHE (p=0.255), RGBShift (p=0.25),
Blur (p=0.1), GaussNoise (p=0.5)

where ||P,, — P;,re d||§ denotes landmark reprojection error, and
Rparams provides regularization on parameter deviations from net-
work predictions.

The hyperparameters for the inference optimizer are detailed
in Table 2. This optimization is performed independently for each
input image and typically converges within 40 iterations, providing
refined geometry particularly beneficial for challenging cases with
extreme poses or occlusions.

6 Evaluation Metrics

We evaluate our approach using two complementary metrics: re-
projection error on landmarks and mesh reconstruction error. For
landmarks, we follow the widely used MediaPipe indexing conven-
tion, but instead of using detections from the MediaPipe library, we
compute reprojection errors between the predicted FLAME mesh
landmarks and the ground-truth FLAME landmarks at the same
indices. Specifically, given predicted 2D landmark positions p; and
ground-truth 2D positions p; for N indexed landmarks, the mean
reprojection error is defined as

1 N
Eim = Zl Ip: = pillz ©)

and we report the mean p(Ejy,) and standard deviation o(Ej,)
across the evaluation set.

To assess mesh quality, we compute vertex-to-vertex reconstruc-
tion error between the predicted mesh V; and ground-truth mesh

vj, with M vertices:

M
1 .
Emesh = 32 ) 19 = vjla. (@)
j=1

These two metrics together capture both the 2D consistency of
reprojections and the 3D fidelity of the reconstructed mesh geome-

try.

7 Limitations and Future Work

While our method demonstrates effective 3D geometry reconstruc-
tion from monocular RGB input, several avenues remain for fu-
ture exploration. For example, explicit modeling of teeth, and de-
tailed eyelid deformation would provide more complete facial rep-
resentations. Additionally, incorporating temporal regularization
techniques could better exploit inter-frame coherence in video
sequences, leading to more stable and temporally consistent recon-
structions.

8 Conclusion

We have presented Camera3DMM, a novel approach for 3D head
modeling that explicitly models full perspective camera parame-
ters alongside traditional 3DMM parameters. Overall, our work
demonstrates that careful consideration of camera modeling and
targeted synthetic data rendering can significantly improve 3D head
modeling in practical scenarios with high perspective distortions.
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Figure 2: Qualitative Comparisons of FLAME meshes predicted by DECA, EMOCAv2, SMIRK, and Camera3DMM(Ours) against
ground truth.



SA Technical Communications ’25, December 15-18, 2025, Hong Kong, Hong Kong Vhavle et al.

Original
-

DECA EMOCAv2 SMIRK Camera3DMM  Ground Truth

"
|

. ¥ : 1 : ¥ Y
SLE -

' bl ﬁ!‘;s‘

9""'— = g N

¥

Figure 3: Qualitative Comparisons along with corresponding Vertex error of FLAME meshes predicted by DECA, EMOCAv2,
SMIRK, and Camera3DMM(Ours) against ground truth.
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